Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome.

Identifieur interne : 004312 ( Main/Exploration ); précédent : 004311; suivant : 004313

Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome.

Auteurs : Jarmo Schrader [Suède] ; Richard Moyle ; Rupali Bhalerao ; Magnus Hertzberg ; Joakim Lundeberg ; Peter Nilsson ; Rishikesh P. Bhalerao

Source :

RBID : pubmed:15447645

Descripteurs français

English descriptors

Abstract

The establishment of the dormant state in meristems involves considerable physiological and metabolic alterations necessary for surviving unfavourable growth conditions. However, a global molecular analysis of dormancy in meristems has been hampered by the difficulty in isolating meristem cells. We used cryosectioning to isolate purified cambial meristem cells from the woody plant Populus tremula during active growth and dormancy. These samples were used to generate meristem-specific cDNA libraries and for cDNA microarray experiments to define the global transcriptional changes underlying cambial dormancy. The results indicate a significant reduction in the complexity of the cambial transcriptome in the dormant state. Although cell division is terminated in the dormant cambium, the cell cycle machinery appears to be maintained in a skeletal state as suggested by the continued presence of transcripts for several cell cycle regulators. The downregulation of PttPIN1 and PttPIN2 transcripts explains the reduced basipetal polar auxin transport during dormancy. The induction of a member of the SINA family of ubiquitin ligases implicated in auxin signalling indicates a potential mechanism for modulation of auxin sensitivity during cambial dormancy. The metabolic alterations during dormancy are mirrored in the induction of genes involved in starch breakdown and the glyoxysomal cycle. Interestingly, the induction of RGA1 like gene suggests modification of gibberellin signalling in cambial dormancy. The induction of genes such as poplar orthologues of FIE and HAP2 indicates a potential role for these global regulators of transcription in orchestrating extensive changes in gene expression during dormancy.

DOI: 10.1111/j.1365-313X.2004.02199.x
PubMed: 15447645


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome.</title>
<author>
<name sortKey="Schrader, Jarmo" sort="Schrader, Jarmo" uniqKey="Schrader J" first="Jarmo" last="Schrader">Jarmo Schrader</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå</wicri:regionArea>
<wicri:noRegion>90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moyle, Richard" sort="Moyle, Richard" uniqKey="Moyle R" first="Richard" last="Moyle">Richard Moyle</name>
</author>
<author>
<name sortKey="Bhalerao, Rupali" sort="Bhalerao, Rupali" uniqKey="Bhalerao R" first="Rupali" last="Bhalerao">Rupali Bhalerao</name>
</author>
<author>
<name sortKey="Hertzberg, Magnus" sort="Hertzberg, Magnus" uniqKey="Hertzberg M" first="Magnus" last="Hertzberg">Magnus Hertzberg</name>
</author>
<author>
<name sortKey="Lundeberg, Joakim" sort="Lundeberg, Joakim" uniqKey="Lundeberg J" first="Joakim" last="Lundeberg">Joakim Lundeberg</name>
</author>
<author>
<name sortKey="Nilsson, Peter" sort="Nilsson, Peter" uniqKey="Nilsson P" first="Peter" last="Nilsson">Peter Nilsson</name>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15447645</idno>
<idno type="pmid">15447645</idno>
<idno type="doi">10.1111/j.1365-313X.2004.02199.x</idno>
<idno type="wicri:Area/Main/Corpus">004196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004196</idno>
<idno type="wicri:Area/Main/Curation">004196</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004196</idno>
<idno type="wicri:Area/Main/Exploration">004196</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome.</title>
<author>
<name sortKey="Schrader, Jarmo" sort="Schrader, Jarmo" uniqKey="Schrader J" first="Jarmo" last="Schrader">Jarmo Schrader</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå</wicri:regionArea>
<wicri:noRegion>90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moyle, Richard" sort="Moyle, Richard" uniqKey="Moyle R" first="Richard" last="Moyle">Richard Moyle</name>
</author>
<author>
<name sortKey="Bhalerao, Rupali" sort="Bhalerao, Rupali" uniqKey="Bhalerao R" first="Rupali" last="Bhalerao">Rupali Bhalerao</name>
</author>
<author>
<name sortKey="Hertzberg, Magnus" sort="Hertzberg, Magnus" uniqKey="Hertzberg M" first="Magnus" last="Hertzberg">Magnus Hertzberg</name>
</author>
<author>
<name sortKey="Lundeberg, Joakim" sort="Lundeberg, Joakim" uniqKey="Lundeberg J" first="Joakim" last="Lundeberg">Joakim Lundeberg</name>
</author>
<author>
<name sortKey="Nilsson, Peter" sort="Nilsson, Peter" uniqKey="Nilsson P" first="Peter" last="Nilsson">Peter Nilsson</name>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="ISSN">0960-7412</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Cycle (MeSH)</term>
<term>DNA, Complementary (metabolism)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Meristem (cytology)</term>
<term>Meristem (metabolism)</term>
<term>Meristem (physiology)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Populus (cytology)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcription, Genetic (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (métabolisme)</term>
<term>Acides indolacétiques (métabolisme)</term>
<term>Banque de gènes (MeSH)</term>
<term>Cycle cellulaire (MeSH)</term>
<term>Génomique (MeSH)</term>
<term>Méristème (cytologie)</term>
<term>Méristème (métabolisme)</term>
<term>Méristème (physiologie)</term>
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (cytologie)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transcription génétique (physiologie)</term>
<term>Transduction du signal (MeSH)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Complementary</term>
<term>Indoleacetic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Méristème</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Meristem</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Meristem</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Acides indolacétiques</term>
<term>Méristème</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Méristème</term>
<term>Populus</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Meristem</term>
<term>Populus</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Cycle</term>
<term>Expressed Sequence Tags</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>Genomics</term>
<term>Plant Physiological Phenomena</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Banque de gènes</term>
<term>Cycle cellulaire</term>
<term>Génomique</term>
<term>Phénomènes physiologiques des plantes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The establishment of the dormant state in meristems involves considerable physiological and metabolic alterations necessary for surviving unfavourable growth conditions. However, a global molecular analysis of dormancy in meristems has been hampered by the difficulty in isolating meristem cells. We used cryosectioning to isolate purified cambial meristem cells from the woody plant Populus tremula during active growth and dormancy. These samples were used to generate meristem-specific cDNA libraries and for cDNA microarray experiments to define the global transcriptional changes underlying cambial dormancy. The results indicate a significant reduction in the complexity of the cambial transcriptome in the dormant state. Although cell division is terminated in the dormant cambium, the cell cycle machinery appears to be maintained in a skeletal state as suggested by the continued presence of transcripts for several cell cycle regulators. The downregulation of PttPIN1 and PttPIN2 transcripts explains the reduced basipetal polar auxin transport during dormancy. The induction of a member of the SINA family of ubiquitin ligases implicated in auxin signalling indicates a potential mechanism for modulation of auxin sensitivity during cambial dormancy. The metabolic alterations during dormancy are mirrored in the induction of genes involved in starch breakdown and the glyoxysomal cycle. Interestingly, the induction of RGA1 like gene suggests modification of gibberellin signalling in cambial dormancy. The induction of genes such as poplar orthologues of FIE and HAP2 indicates a potential role for these global regulators of transcription in orchestrating extensive changes in gene expression during dormancy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15447645</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>01</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2008</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0960-7412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>40</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2004</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome.</ArticleTitle>
<Pagination>
<MedlinePgn>173-87</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The establishment of the dormant state in meristems involves considerable physiological and metabolic alterations necessary for surviving unfavourable growth conditions. However, a global molecular analysis of dormancy in meristems has been hampered by the difficulty in isolating meristem cells. We used cryosectioning to isolate purified cambial meristem cells from the woody plant Populus tremula during active growth and dormancy. These samples were used to generate meristem-specific cDNA libraries and for cDNA microarray experiments to define the global transcriptional changes underlying cambial dormancy. The results indicate a significant reduction in the complexity of the cambial transcriptome in the dormant state. Although cell division is terminated in the dormant cambium, the cell cycle machinery appears to be maintained in a skeletal state as suggested by the continued presence of transcripts for several cell cycle regulators. The downregulation of PttPIN1 and PttPIN2 transcripts explains the reduced basipetal polar auxin transport during dormancy. The induction of a member of the SINA family of ubiquitin ligases implicated in auxin signalling indicates a potential mechanism for modulation of auxin sensitivity during cambial dormancy. The metabolic alterations during dormancy are mirrored in the induction of genes involved in starch breakdown and the glyoxysomal cycle. Interestingly, the induction of RGA1 like gene suggests modification of gibberellin signalling in cambial dormancy. The induction of genes such as poplar orthologues of FIE and HAP2 indicates a potential role for these global regulators of transcription in orchestrating extensive changes in gene expression during dormancy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schrader</LastName>
<ForeName>Jarmo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moyle</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bhalerao</LastName>
<ForeName>Rupali</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hertzberg</LastName>
<ForeName>Magnus</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lundeberg</LastName>
<ForeName>Joakim</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nilsson</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bhalerao</LastName>
<ForeName>Rishikesh P</ForeName>
<Initials>RP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002453" MajorTopicYN="N">Cell Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018519" MajorTopicYN="N">Meristem</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="N">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15447645</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-313X.2004.02199.x</ArticleId>
<ArticleId IdType="pii">TPJ2199</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
<name sortKey="Bhalerao, Rupali" sort="Bhalerao, Rupali" uniqKey="Bhalerao R" first="Rupali" last="Bhalerao">Rupali Bhalerao</name>
<name sortKey="Hertzberg, Magnus" sort="Hertzberg, Magnus" uniqKey="Hertzberg M" first="Magnus" last="Hertzberg">Magnus Hertzberg</name>
<name sortKey="Lundeberg, Joakim" sort="Lundeberg, Joakim" uniqKey="Lundeberg J" first="Joakim" last="Lundeberg">Joakim Lundeberg</name>
<name sortKey="Moyle, Richard" sort="Moyle, Richard" uniqKey="Moyle R" first="Richard" last="Moyle">Richard Moyle</name>
<name sortKey="Nilsson, Peter" sort="Nilsson, Peter" uniqKey="Nilsson P" first="Peter" last="Nilsson">Peter Nilsson</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Schrader, Jarmo" sort="Schrader, Jarmo" uniqKey="Schrader J" first="Jarmo" last="Schrader">Jarmo Schrader</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004312 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004312 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15447645
   |texte=   Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15447645" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020